
AXIALLY SYMMETRIC LONG WAVES ON THE SURFACE 

OF A VARYING-DEPTH BASIN 
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The axially symmetric Kor teweg-de  Vries (KdV) equation for the case of  a constant-depth basin was obtained 
in [1 ]. In the present paper we derive the axially symmetric KdV equation for a varying-depth basin. Condi- 
tions are shown for the equation obtained, under which the asymptotic behavior of  its solution is described by 
an equation of  the form 

u t -t- u%. "+- uxx~: = O, 

whose asymptotic behavior is well known [2]. 

1.  

formulated (in the planar and axially symmetric cases) as follows: 
For an inviscid incompressible heavy liquid the problem of potential motion in a varying-depth basin is exactly 

k~ 
u ~ + w z +  ---z--=0; (1.1) 

equation of  continuity 

u~- -  w, = O; (1.2) 

equation of  no vorticity 

constancy of' pressure at the free boundary 

z = h(r, t),  u t + h r -k- uur q- wwr + hrw t ~.-. h tw r = 0; 

kinematic condition at the free boundary 

h t - -  W + uh r =0;  

and the nonflow condition at the bot tom 

(1.3) 

(1.4) 

z = - g ( r ) ,  to = - i t u .  (1.5) 

The system of equations (1.1)-(1.5) was written in dimensionless form. All lengths are measured here in units of H o 
(the characteristic basin depth), velocities in units of  (gH o)1/2, time in units of  (H o/g)1/2, where g is the acceleration due to 
gravity force, and the vertical z coordinate is measured from the unperturbed free surface of  the liquid, corresponding in 
the axially symmetric case to k = 1, and in the planar case to k = 0. We note that Eq. (1.3) was obtained by the usual 
Cauchy-Lagrange integral by differentiation with respect to r along the surfaces z = h(r, t) and i~I - dH/dr. 

Supplementing the system (1.1)-(1.5) by initial conditions, we obtain the full formulation of  the problem. 

As is well known, the system of  equations (1.1)-(1.5) possesses two important conservation laws - mass and energy - 
which for bounded h, u, and w tending quite quickly to zero for r -~ ~ ,  have the following form: 

hrhdr = Cx; (1.6) 
0 

J" y (1.7) 
0 - -H(r)  0 

where k = 1 corresponds to the axially symmetrical case. In the planar case it is necessary to put k = 0 and note that the lower 
integration limit over r is _oo. 

To derive approximate equations describing wave propagation in one (positive) direction of  the r axis it is necessary 
to determine orders of  magnitude. We assume that h, u, w ,  O/Ot, a/Or, 8/0z are of the same order of  smallness as in an 
isolated wave propagating in the positive direction of  the r axis. It can be verified that for an isolated wave propagating 
over a uniform bottom, in a coordinate system moving with critical velocity V = (gHo)l/2 the following estimates hold: If  
h "~ e << 1, then 
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u ,-, e, tv ..~ est2,0/Ot N ss/2, O/Or ,.~ sz/2, OlOz ,-. t .  (1.8) 

For the case of  a basin with a nonuniform bottom it is natural to assume (at least for the problem of evolution of  waves 
arriving from the region of  a uniform bottom) that under some restrictions on the smoothness of  the function H(r) and 
smallness of  the bot tom slope H(r) the estimates (1.8) remain valid in a coordinate system moving with velocity V = 
(gH(r))] /z The smallness of  the bottom slope, required for isolating waves of  a single direction, can be estimated as follows. 
In the linear approximation the propagation of  axially symmetric waves is described by the system of  equations 

h t -}- Hur  + I I u  + (Vr )Hu  = O; 

u t + h,  = O. 

A wave moving in the positive direction must have the form 

h = (Pl (r) h (~) + 0 ( 0 ,  u = (P2 (r) u (~) + 0 (e), 
P / 

= ~ H-Z/2dr  - t. 
r 0 

( 1 . 9 )  

(1.I0) 

(1.11) 

It can be shown that in the general case of  an arbitrary function H(r) the solution of  system (1.9), (1.10) has the form 
(1.11) when and only when the last two terms of  the left-hand side of  Eq. (1.9) are successively of  small order relative to 
the first two terms, i.e, when they can be neglected in the zeroth approximation. In this case the reflected waves will be 
small in amplitude, and in the zeroth approximation will not affect wave propagation in the positive direction. 

Consequently, separation of  waves of  one direction is possible for //(r) ~ es/2, r ~ s-3/~ (the length of  waves under 

consideration being e -1/2). Thus, the orders of  all quantities were determined, and we can now turn to deriving the approxi- 
mate equation. 

2. We introduce new unknown functions and independent variables by the following relations: 

h = eh',  u = eu' ,  w = 88/2W ', r = e-V~ ', t = s-V~ (2.1) 
rt 

x = S H - Z / 2 d r  ' - t ' ,  x = e r ' ,  z = [ e h ' - - H ( x ) l q - - H ( x ) ,  (2.2) 
% 

where x, q, and r are new independent variables. 

The replacement of  independent variables (2.2) implies transition to a coordinate system moving in the positive 
direction of  the r axis with critical velocity V = (H(r)) 1/2. Moreover, we transform from a region of  motion r < co, --H(~) 

z ~ h ( x ,  t) with unknown upper boundary to a fixed q region z < co, 0 ~ q <~ t .  

Substituting (2.1), (2.2) into (1.1)-(1.5) and omitting the primes, we obtain 

sSl~(ux "t- H-Zl~wq) q- sSl~[HZl2u~ + H - l h u x  - -  ( H ' Z h x  + H-Zl2H)quq + kHZ/~u/x] = O(sTIZ); (2.3) 

SUq + s~Htl~wx = O(sS); (2.4) 

881~(hx - -  I-[tl~ux) --~ 851~(Ht12h~ q- H - t I ~  - -  H-tlZhtz= "}" uux) -~ O(e7/2); (2.5) 

es/~(hx + w) - -  s a / ~ H - t l 2 u h x  -~- O (8 7/3) for q = i;  (2.6) 

es/zw q- sSI2Hu = O, H = H(~),  f f  ~ dH/d~ for q = 0. (2.7) 

We now seek a solution of  system (2.3)-(2.7) in the form of a power series in 

h.--~ ~ hn(x.,T)8 n, u.-.--. ~ Un(I,T, q) zn, ll)---~ ~j  //)n(.Z,T, q)8 n. (2.8)  

Substituting (2.8) into (2.3)-(2.7) and equating to zero the coefficient of  the lowest power of e in each of  Eqs. 
(2.3)-(2.7), we obtain the zeroth approximation problem 

Uox -~" H-Zl2Woq = O, Uoq "~ O| 

fo~ 
for 

q = I ho.~ ~ Ht/auox = O, h0x + w0 = 0; 
q = 0  w 0 = 0 ;  for x - + o o h o = u o = w o = O .  

The solution of  this problem is 

uo = H-Z/2ho, u,o = --hoxq~ (219) 
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with h o (x, r) remaining undetermined. To obtain an equation for h o (x, r) it is necessary to consider the following 
approximation. 

Taking into account (2.9), this approximation gives the problem 

( !  H - ~ ] / - -  + ) h 0  = 0; (2.10) Ulx § H-*12wlct + ho~ § H-a/=hohox --  T 

ulq § IPl~'qh~,=~ ---- 0; (2.11) 

hix - -  Hll"ulx -}- H1:ho~ § H-lhohox = O, hlx + wl - -  H-lhohox = 0 (2.12) 
for: q = I; 

wl § H-X:/Iho = 0 for q = 0. (2.13) 

The unknown functions u 1 and w 1 are found from Eqs. (2.10), (2.11) with account of  (2.13). Substituting u 1 and 
w 1 just  found in the boundary conditions (2.t 2), we obtain 

1 
hax --  H1/'(D~ § HU'ho~ § H-~hohox § ~ Hhoxxx = O, 

/cHI/,, 
"I h ~ H-":":I + --V-') ho O, h l x -  H1/2@x --  H1/2ho~- 2H-lhohox § -6 - H  o~.~ --  ~. = 

where (I)(x, r), generated by integrating Eq. (2.11). Eliminating h~ from these equations, we obtain the required equation 
for determining h o (x, r)  

ho _ ~ T  n nonox§247 H 1H-}- -~  h o = 0 .  (2.14) 

Equations (2.14), (2.9) determine in the zeroth approximation the wave propagating in the positive direction of the 
r axis in the axially symmetric (k = 1) and planar (k = 0) cases in a varying-depth basin. For  H(v) - 1 the equation coin- 
cides with that obtained in [1], where several properties of this equation were investigated. For  k = 0 (the planar case) 
Eq. (2.14) coincides within the accuracy of  the coordinate system with the "generalized" KdV equation [3]. 

Substituting in the conservation laws (1.6), (1.7) the new variables (2.1), (2.2) and taking into account (2.8), (2.9) 
we obtain 

~'hI-[ J''g (T) J h~ (T, X) dx  = Tko H1/o- (t o) t h~ (To, x) dx -= Co § 0 (8), (2.16) 
- - z o  - - c o  

where C 1 and C 2 are constants, and h 0(v o, x) is the initial perturbed free surface. The appearance of  _o~ at the lower 
limit is explained by the fact that the waves propagate with a length of the order of  e -t/2 at r ~ e -~/2 Since the mass and 
energy conservation laws are among the most important  properties of  the original exact problem, it is natural to assume that 
among all solutions of the approximate equation (2.14) only those satisfying the conservation laws (2.15), (2.16) have 
physical meaning. 

It can be verified that the energy conservation law (2.16) is satisfied for any exact solution of Eq. (2.14) under the 
assumption made above of  sufficiently fast limit tendency/z0(z0, x) ~ 0 for Ix[ -+ ~o. The mass conservation law (2.15) is 
satisfied only when C 1 = 0, i.e., 

,, h0 ("~, x) d x =  .i ho(%, z) dx = 0 ,  (2.17) 
~ o o  - - z ~  

while the vanishing of  the integral of  the initial perturbation h 0(%, x) over x is a necessary and sufficient condition for 
satisfying the mass conservation law for k = 1 and arbitrary function H(r). This firstly implies that in the axially symmetric 
case there are depressions along with humps in a wave of  a single direction. Secondly, it follows that Eq. (2.14) is applicable 
to the axially symmetric case not earlier than the moment  of  time when a wave satisfying condition (2.17) is evolved from 
an arbitrary initial perturbation. Until this moment  waves of both directions are important  for the evolution of the initial 
perturbation, and Eq. (2.14) is not  sufficient for describing this evolution. 

In the planar case (k = 0) the mass conservation law is satisfied at H(v) ~_ const for arbitrary C1, and in the absence 
of condit ion (2.17), while for k = 1 this condition is necessary also for H(T) - const [1]. 

It must be noted that in the planar case and H(v) # const condition (2.17) is not satisfactory, since the existence was 
proved of  a solitary wave, for which (2.17) is not satisfied. In this case, obviously, it is necessary to consider an equation 
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for h a , allowing the appearance of  waves with a length of  an order of  magnitude larger than for h 0. The presence of  these 
waves, not violating the quadratic energy conservation law (due to smallness of amplitude), can lead to satisfaction of  the 
mass conservation law (2.15). From the physical point  of  view the appearance of waves with a length of  the order of  the 
bot tom inhomogeneity is natural. This problem, however, is a separate problem not considered in the present paper. 

Taking into account the remarks made, the propagation problem of  long planar (k = 0) and axially symmetric (k = 1) 
waves in the positive direction of the r axis can now be stated as follows: Find a function ho(% x) satisfying Eq. (2.14), 
the initial condition h0(ro, x) = F(x) [F(x) is a given function], the boundary condition ho(r, x) ~ 0 for lzl--)- oo, and the 
conservation laws (2.16), (2.17). For  k = 0 and H(r) - const (2.17) is replaced by (2.15). 

3. One of  the interesting problems in studying the problem stated is that of asymptotic behavior of  the solution of  
Eq. (2.14) for large r at given H(r). In particular, the practical important  case of decreasing depth with increasing % 
corresponding to wave migration from an open ocean to a coast, is of  interest. 

It is seen from Eq. (2.14) that with decreasing depth the role of  the nonlinear term must increase due to the co- 
efficient of H -3/2. On the other hand, it is well known that the presence of  nonlinearity leads to distortion of the front 
wave, which automatically involves an increase of  the dispersive term with a third derivative of  h 0 with respect to x. 
Consequently, this term must be of  the same order as the nonlinear one, despite the fact that its coefficient is decreasing. 
Taking these considerations into account, one can at tempt to represent h o in the form 

ho(x, T) =/('~)U[cp(-c)x, r('~)], (3.1) 

where the functions fir) and ~0(r) are determined by two conditions. One of  them is the equality of  coefficients of  the 
nonlinear and dispersive terms. As a second condition we require that after substituting (3.1) in the energy conservation law 
(2.16) the following relation is obtained: 

U s(T,11) d G =  t U s(0,~l) d q = C ,  (3.2) 
U 

where 77 = r  and T(r) are new independent variables. This leads to representing h o in the form 

h.o (x, ~) = l U (~1, r ) ;  .~,.hi:~'-----~ (3.3) 

3x 9 ~ d'~ 
~l = ~ ,  2" = -2 -  J "~k]?  ' 

~o (3.4) 

Substituting (3.3), (3.4) into (2.14), (2.15), we obtain 

+ + + T ) l - r  + v =0;  (3.5) 

j U (T, 11) dq = j~ U (0, ~1) d~l = 0. (3.6) 
~ m o  - - o o  

Moreover, U(T, ~7) satisfies the energy conservation law (3.2). 
[ �9 \-si0 

It follows from Eq. (3.5) that in the special case k = 1, H (~) = [.-~0) U(T, ~/) is determined by the equation 

Ur + UUn + Unnn=O,  (3.7) 

i.e., the KdV equation, whose asymptotic solution for large T was investigated in significant detail [2]. 

It follows in this case from (3.4) that 

T=t6Lk~02 ~ , H  - 

whence it is seen that  T -+ ~ for r ~ ~ ,  and, consequently, the asymptotic U(T, rl) for T -~ o~ determines through (3.3), 
(3.4) the asymptotic h o (% x) for r -+ ~ .  In particular, for initial perturbations satisfying condition (3.6) two characteristic 
variations of  the behavior of  the solution of  Eq. (3.7) are possible, depending on the parameter o 2 , equal to the ratio of  the 
nonlinear term to the dispersive term at the initial moment.  For  a values less than some critical a o the solution is repre- 
sented in the form of  a spreading wave packet,  similar in velocity of  decreasing amplitude and phase motion to the solution 
of  the linearized KdV equation. For  a > (%, the solution at r -+ =' is represented as one of  several solutions running to the 
right: 
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Iv ] 
as \ 

Ui(T, ~1) = a / c h - :  ~ ( , 1 - -  -g- T ) ,  (3.8) 

and the wave packet spreads in the region rl ~ 0~ with a i = const, i.e., after their formation and separation of  the spreading 
tail the solitons remain stationary (in the coordinates rT, T). It follows from (3.3), (3.4) that in this case the amplitude of 
solitons (3.8) decreases as r -4/9, their length is independent of  r, and the migration velocity decreases as r -1/9. 

Let now 

Substituting (3.9) into (3.4), we obtain 

T =  

11(~) = ('dro) -~', a > O. 

9~<'-~) -[(~l'~o)'-"u-' - t ] ,  2 (4cx -q- t - -  k) 

(3.9) 

(3.1 O) 

i.e., T -+ ~ for t - +  ~ .  

where 

Equation (3.5) is then 

A( 
Ut -E UU~ -r- Unnn 7- "7- ~lUn + y U = O, 

and, consequently, for large Tt - T. 
T replaced by t. 

(3 .1t)  

( 2k -  9a) . 9x~ x-h) 
A =  0(4c~+i - -a . ) '  t = r ~  2 ( 4 ~ + 1 - - k ) '  

The energy and mass conservation laws have the forms (3.6), (3.2), respectively, with 

Taking into account the properties of  the solution of  the KdV equation discussed above, for a < a 0 one may seek 
a solution of  Eq. (3.1 I) for large t in the form of  series in inverse powers of  t 

L-(n, t ) =  ~ Um(~l, t) t - 'L (3.12) 
:ql~0 

For U o we then have the KdV equation, and for the successive approximations we have a recurrent system of  linear equations. 
In this case U o has the shape of a spreading wave packet, and the absence of  solitons escaping in the region of  large ~7 
guarantees the smallness of  terms rejected in the zeroth approximation for large t. For  a > o o, i.e., in the case of  soliton 
formation with amplitudes a i for the absence of  terms rejected in the zeroth approximation and not  decreasing with increas- 
ing t, one must represent solitons in the form 

._0(. /~-7 Z~ t,I/ )' (3.13) 

where Z = ~1 - -  g~(t). The functions ~0i(t) are found from the condition that in the V region corresponding to motion of  
the i-th soliton Eq. (3.11) is of  the form 

a~ , A (  1 ) 
a Uz -r UUz -t- Uzzz -r-" T- ZUz q- "5- U = 0, (3.14) 

i.e., the condition that the main part of  Eq. (3.14) be an equation describing a stationary soliton (in the coordinates Z, t): 

J ai / al  \ [r t \.4 
' 

_ _  rl i ~ t 

A =/= 1, 
(3.15) 

where t , ,  r/ .  correspond to the moment  of time and the position of  the i-th soliton, only separated from the tail. Thus, 
in this case the amplitude, spreading, and velocity of  solitons are determined by Eqs. (3.3), (3.4), and (3.15). Correc- 
tion terms to the zeroth approximation,  as can he seen from (3.9)-(3.12), are proport ional  to tit m ,-, [~k--1//d],~ (m = 1, 2, 
3 . . . .  ), i.e., they decrease quickly with decreasing depth. We note that the KdV approximation adopted here is valid for a 
region of  depth variation roughly 10 times the wave motion from the region of  an open ocean in the direction of  the 
continental shelf. 

For  k = 0 (the planar case) similar results can be obtained for the case of  depth variation according to the law 

H ( T ) =  [t - -  (t/L)(~ - -  %) ]a , % ~ T ~ T 0  + L ,  a > i / 4 .  

In this case all of Eqs. (3.11)-(3.15) are valid, where 

I H-~+~ 0a 0L 
! 

- lJ ,  t = T ~ - ,  
9L 

A ----- z (4~7- ~)' ~ = ~ )  L - -  ' " t'-'~- -- ~)" 
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rn(4a--1) 

H a i.e., they decrease equally quickly (for example, for a linearly The additional terms are proport ional  to ~,--7,.~ 

varying depth a = 1 and l i t  ~ ,.~ 141 s~) . The requirement a > 1/4 is necessary so that T ~ oo for ~ - +  ~0 + L . A wider 
class of  functions H(r), for which the procedure outlined above for obtaining asympt9tics is applicable, is obviously the 
class of  functions H(r) allowing one to represent the expression rkH 4 [(9/2)(k/r)  + (H/H)] in the form of  a series in inverse 
powers of  T. In this case U(~, T) can be sought in a form analog to (3.12). The difference with the description above is 
only in the velocity of  decreasing additional terms. 

We note that the law of  increasing wave amplitude being inversely proport ional  to the depth, following from (3.3) 
for k = 0 (planar case), was obtained in [4] by the method of  adiabatic invariants. 

4. Consider the case H(r) - 1, k = 1. The original equation is 

z i h + @ h o  O. h~ + T h~176 + "g- oxxx = (4.1) 

The analogy between Eqs. (4.1) and (3.1 1) is obvious. However, the problem of  the asymptotic solution of  Eq. 
(4.1) differs substantially from that  considered above, since the conservation law for h o (r, x) is 

�9 r ~ h ~ ( ' c , x ) d z =  "c o ~ ho(%, iz )  d x =  C, (4.2) 
~ o a  ~ o o  

and, consequently, the equation obtained by rejecting the term h o /2 r  does not  possess the required conservation law (4.2), 
while by means of the replacement (3.3), (3.4) one achieves this correspondence between Eq. (3.11) and the conservation 
law (3.2). The requirement of  this correspondence leads to the replacement 

o o  

h,o (~, z) = ~c-1/~ ~ Gt-~,  
~ 0  

while a linear KdV equation is obtained for V o. The asymptotic for this equation is well known [2], and is therefore not  
given here. Thus, the diverging axially symmetric waves for H(r) - 1 are for large r spreading wave packets with further 
damping %r-1/2 in comparison with plane waves. 

One can also demonstrate initial conditions for which the existence of  axially symmetric waves of  the soliton type 
is possible for large r. 

Let 

' - ,  ( 4 . 3 )  

where e << p << 1. Substituting (4.3) into (4.2), we obtain 

~ o o  - - o o  

(4.4) 

We replace functions and independent variables 

h 0 (% x) = ~ U (% t); (4.5) 

3z . 9 i n  x 
?] = (~r)l,3, t = 7-~ ~ To" (4.6) 

From (4.4) we obtain 

e o  

J U'(~l , t)  d n =  3% j 1 2 ( z ) d z = C .  (4.7) 
~ o o  ~ o o  

Substituting (4.5), (4.6) into (4.1), we obtain 

(4.8) 

Representing U(r/, t) in the form of  a power series of the small parameter/~* =/~/27, we obtain for U o a KdV 
equation possessing the conservation law (4.7) required by us. According to the discussion above for a > a o solitons of  
the shape (3.13) will appear, with 

= a~ (4.9) 
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where a i are the amplitudes of the solitons formed, and t .  and ~7, correspond to the breakup moment of the soliton from 
the taft. It  follows from (4.8), (3.13), and (4.9) that the rejected terms are of the order of/~* for any t -+ o o .  

We note that a similar treatment of spherical waves (k = 2), occurring, for example, in an inviscid liquid with gas 
bubbles, leads to the equation 

[ , i 
+ + 0, (4.1o  

from which it follows that wave-type solitons can exist only for r < l/p*. From the mathematical point of view this is a 
consequence of the fact that unlike the axially symmetric case, for which the self-similar solution (4.5), (4.6) satisfies the 
energy conservation law (4.7) for the planar KdV equation, this correspondence does not exist for the spherical cases. The 
requirement that the zeroth approximation equation be the KdV equation and that the energy conservation law for U 0 
have the shape (4.7), leads in the spherical case to the replacement 

a consequence of which is also Eq. (4.10). 

In conclusion we note that the asymptotically diverging axially symmetric wave obtained in [5, 6] is incorrect, 
since for it the energy is not conserved in the wave, but increases as 7 a/4. 
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